

Precast Box Culvert Installation Procedures

Precast Box Culvert Installation

Oliver S. Delery, Jr., P.E. Vice-President Technical Marketing North America Forterra

AGENDA

- SUBMITTAL PROCESS
- MANUFACTURING PROCESS
- INSTALLATION OF A PRECAST BOX CULVERT
- BOX CULVERT APPLICATIONS/FEATURES

American Concrete Pipe Association

INSTALLATION METHODS

Tunnel

Trench Terminology

Trench Terminology

Bedding - Leveling Course

- A bedding thickness of no less than 3 inches.
- If foundation is rock bedding should be a minimum of 6".
- RCBs are designed for installed conditions not test conditions.
- Bedding should have a uniform flat surface.
- Coarse bedding materials are not beneficial due to irregular/sharp angles.
- Bedding width should equal the width of the box and the length of the box.

Compacted Fill Material

- This protects the box culvert during installation from impact damage.
- Should be placed in uniform layers along sides/over top of box sections.
- Should contain no debris, organic matter, frozen material or large stones.
- Placed and compacted to prevent settlement at the surface.
- Compaction and equipment loads should not exceed design strength.

ASTM/AASHTO STANDARDS FOR RCB

★ AASHTO M273 ★ AASHTO M259

 \bigstar

Welded wire fabric 65,000 psi Concrete 5,000 psi

American Concrete Pipe Association

MANUFACTURING

Dry Cast or Wet Cast 5,000 psi concrete (min.) 65,000 psi steel Steam Cured

One Form Adjustable or Set Form

SUBMITTAL PROCESS

MANUFACTURER TO CONTRACTOR CONTRACTOR TO ENGINEER/OWNER DRAWINGS FOR REVIEW AND APPROVAL DRIVES PRODUCTION/LAY SCHEDULE ENSURES STRUCTURE MEETS DESIGN SPECIFICATIONS

RusselvilleAR-4x3-8506UB-REV.XLS - English

Practical Exercise

Situation

You have a typical section for a trench detail.

<u>Task</u>

Identify the terminology related with a trench detail.

Practical Exercise

Trench Terminology

Practical Exercise

Trench Terminology

?

Final Backfill

BEDDING****DELIVERY****HOMING****JOINT MATERIAL****FABRIC****INITIAL BACKFILL****FINAL BACKFILL

INSTALLATION

Loads on Box Culverts Earth Live

<u>Construction Load</u> Structure not Designed for C-Loads 3' Minimum of backfill

Installation

- Scheduling/Unloading should be discussed to insure efficient delivery process.
- Prepare site, excavate trenches to the minimum required for box culvert installation.
- Divert drainage.
- Establish a good level grade using fine to medium granular material.
- Bedding Leveling course should be a minimum of three (3) inches, except in rocky foundation it should be six (6) inches minimum.
- Make sure the first few box sections are installed correctly, this will influence line and grade to follow.
- Place joint material on the bottom half of the groove & top half of the tongue of box.
- Make certain to check that boxes are aligned correctly prior to pushing home.
- Keep the weight of the box section, being set, on the crane and use winches to pull the joint home/dozer to home.
- Place backfill around structure to finished grade.

Installation Scheduling/Unloading Placing Sequence

Unloading RCBs

Caution must be exercised Handled per Manufacturer's recomm. Distribute load properly Lifted not dragged Crane with stablilizers

Installation Scheduling/Unloading Placing Sequence

Unloading RCBs

Caution must be exercised Handled per Manufacturer's recomm. Distribute load properly Lifted not dragged Crane with stablilizers

Installation Site Preparation **Dewatering/Divert Drainage**

Dewatering Control of Surface and subsurface water is required to maintain dry

conditions for installation

Installation Site Preparation Dewatering/Divert Drainage

Dewatering

Control of Surface and subsurface water is required to maintain dry conditions for installation

Installation

GDOT

American Concrete Pipe Association

Installation Site Preparation Establish Good Level Grade

Bedding Key to smooth installation Establish bedding at 3"-6" Minimum

Installation Site Preparation Establish Good Level Grade

Bedding

Key to smooth installation Establish bedding at 3"-6" Minimum

Installation Site Preparation Establish Good Level Grade

Bedding

Key to smooth installation Establish bedding at 3"-6" Minimum

Installation Install first few boxes Influences line and grade of remaining

Placement of RCBs

1st RCB sets the stage Take your time and get it right More time on #1 smoother it goes

Unloading RCBs

Caution must be exercised Handled per Manufacturer's recomm. Distribute load properly Lifted not dragged Crane with stablilzers

Installation Install first few boxes Influences line and grade of remaining

Placement of RCBs

1st RCB sets the stage Take your time and get it right More time on #1 smoother it goes

Installation Place Joint Material

Placement of Gasket

Wrap around joint completely Do not overlap gasket material Fabric at joints

Installation Place Joint Material

Placement of Gasket Wrap around joint completely

Do not overlap gasket material Fabric at joints

Installation Place Joint Material

Placement of Membrane

All box joints Top external joint Extend 1' down sides Min. width/12"-6" each side of c/l

Installation Prevent Bedding Material from getting in joint

Homing of box culverts Ensure bedding is smooth at face of joint. Smooth out in order to improve homing of RCBs

Installation Joining

Homing of box culverts

Several techniques driven by capabilities of crew, equipment and conditions

Installation Joining

Homing of box culverts

Technique based on Crew Come along Dozer Trac hoe

Installation Joining

Homing of box culverts Protect the Joint Maintain Lift Pressure on Box

Installation Joining

<u>Homing of box culverts</u> Keep Sections off Bedding Reduce Friction/Push Required

Installation Joining

<u>Final Touches</u> Alignment/String, tape measure Pipe Ties (if required)

Installation Joining

Homing of box culverts Come-along/tugger pulls home boxes

GDOT

Multi-Barrel

Create distributed load condition Lean Grout (6" min.) Lifts (8" max.) 1.5 Sacks pc/Ton material mixture 3 to 6 inches Aggregate Size No. 78 or No. 8 (min. Grade B)

Association

Multi-Barrel

Create distributed load condition Lean Grout (6" min.) Lifts (8" max.) 1.5 Sacks pc/Ton material mixture Or 3 to 6 inches Size No. 78 or No. 8 (min. Grade B)

> Concrete Pipe Association

Multi-Barrel

Create distributed load condition Lean Grout (6" min.) Lifts (8" max.) 1.5 Sacks pc/Ton material mixture Or 3 to 6 inches Size No. 78 or No. 8 (min. Grade B)

Installation - Multi-Cell

Multi-Cell

Reduces Installation Time Requires Greater Lift Capability Precast Headwall Attached

Installation Multi-Cell

Multi-Cell

Reduces Installation Time Requires Greater Lift Capability Precast Headwall Attached

Installation End Treatments

Headwalls #4 Rebar @ 10" o.c. along top for headwall #4 J Bar (2 per box) for headwall

Headwalls #4 Rebar @ 10" o.c. along top

Installation End Treatments

GDOT

Installation End Treatments

Headwalls/Apron/Wingwalls WWF exposed along top/walls/bottom

Headwalls #4 Rebar @ 10" o.c. top of headwall #4 J Bar (2 per box) for headwall

Installation End Treatments - Precast

Headwalls/Apron/Wingwalls Match Embankment Slope

Headwalls/Apron/Wingwall Flared to Maximize Flow Reduce Maintenance

Toewall Prevents Scour

Installation End Treatments (CIP)

Multi-Barrel

Multi-Barrel

Create distributed load condition Flowable Fill Compactable Material

Installation

GDOT

American Concrete Pipe Association

Complete Backfill

Structural Backfill

Backfill material placed in lifts (6" loose/4" compacted) Backfill free of lumps/stumps/Rocks Bedding/Leveling Course (4"-8")

Installation Structural/Final Backfill

<u>Trench Excavation</u> Minimize trench excavation Backfill compacted in lifts

Construction Loading

No construction loads with less than 3' of cover No large rolling compactors

ACCELERATED PRECAST CONSTRUCTION CHARACTERISTICS

MULTI-BARREL**SKEWS**PENETRATIONS**LOW WATER CROSSING **ELBOWS**MINIMAL COVER**OPEN CHANNEL**BOTTOMLESS BOX LARGE BOX CULVERTS**MULTI-CELL**JACKING BOX CULVERTS

> Concrete Pipe Association

Installation Curved Alignment

Obrien County, Iowa Hancock Concrete Products

Single 12' x 10' Curved Alignment

1" U-Tie 1' above Centerline

End Section 2-1 or 3-1 Slope 0-15-30-45 degree skews

Large Box Culverts Larger spans

Large Box Culverts

Allowed per Special Design Up to 24' Span (Wet Cast) Requires Greater Lift Capability

23' x 8' Reducer

Twin 14'x11' Single 20' x 12'

Association

SPECIAL DESIGN (compare)

Determine the weight of:

- an 8' section of 8'x8' RCB
- Cast in place (9.5"x8"x9.5") = 0.992 CY/FT
 - 2.01 tons/ft
- Precast
 - (8"x8"x8") = 1.8 tons/ft
 - (8"x7"x7") = 1.63 tons/ft
- Concrete = 150#/CF or 4050#/CY

Which does a contractor prefer:

- 5'x2' Cast In Place
- 5'x2' Precast

American Concrete Pipe Association

LOW WATER CROSSING Before/After Replacement

<u>Features</u> Triple Barrel CMP Vertical Curve with Highpoint Roadway Washes Away Each Event

LOW WATER CROSSING Before/After Replacement

<u>Features</u> Triple Barrel CMP Vertical Curve with Highpoint Roadway Washes Away Each Event

LOW WATER CROSSING After Replacement

Features

Seven Barrel RCB Low Water Crossing Replaced Triple Barrel CMP Concrete Driving Surface with Curb Rock Face Aesthetic Look

SKEWED END

RCBs are skewed Left Forward Skew Right Forward Skew Limited: size/degree of skew

PENETRATION

<u>Features</u> Penetration Addressed in Plant Can Design Field Penetration Solution Top and Bottom Penetrations

Elbows/Bends

<u>Features</u> Manufacture Any Bend Angle Bends on Multi-Barrels Saves Money/Eliminates Junction Box

Bridge Alternative Multi-Barrel Capable

<u>Multi-Barrel</u> Create distributed load condition Flowable Fill Compactable Material

MINIMUM COVER Maximum Hydraulics

<u>**0' Cover**</u> Maximize Hydraulic Capacity Place Road Surface directly on top

Miscellaneous

Decorative End Treatments Rock or Brick Angle Iron Attached

Pedestrian Water Crossing

Storage Container – Ft. Riley

Jacking Box Culverts

Factors

- 1. Nature of soil, water table & effects of dewatering
- 2. Jacking/Receiving Pit
- 3. Length, alignment and outside dimension of pipeline
- 4. Jacking Forces
- 5. Pipe Joints
- 6. Loads on shield and pipe
- 7. Size of overbore
- 8. Lubrication
- 9. Grouting
- 10. Spoils Removal

Bottomless Culvert

- 50' Maximum Span
- 12' Maximum Rise (stem wall)
- 45 Degree Max Skew
- Key way
- Multi-barrel applications
- Penetrations (top and/or sides)

6"x6"x3/8" masonite shim Legs placed within keyway

PRECAST ADVANTAGES

- BETTER QUALITY CONTROL
- EASE OF INSTALLATION-PIPE CREW
- ELIMINATES DANGER OF OPEN TRENCHLESS ENVIRONMENTAL IMPACT
- ALLOWS IMMEDIATE BACKFILL
- NO LENGTHY CONSTRUCTION DELAYS-DETOURS-RUN AROUNDS
- NO LENGTHY DESIGN TIME
- DOT APPROVED
- SAVE TIME AND \$\$\$\$\$\$

ECONOMIC BRIDGE REPLACEMENT

Accelerated Precast Construction

Fundamentals Attributes

Reduce

Reduce Road User Impacts Reduce Costs Reduce Construction Time

Reduce Weather Related Time Delays

Improve

Improve Durability/Quality Improve Work Zone Safety

Precast Box Culverts

Ease of Construction – Pipe Crew No Lengthy Design Time **Reduced Open Trench Time**

American Concrete Pipe Association

Minimize

Minimize Environmental Impact Minimize Impact to Existing Roadway Alignment 73
Oliver Delery, PE 504.400.3761 oliver.delery@forterrabp.com

