

Indirect Design

Josh Beakley - ACPA jbeakley@concretepipe.org

Outline

- What is Indirect Design?
- Installation Types
- Loads
- Bedding Factors
- D-Loads
- Arch and Elliptical Pipe
- Examples

AASHTO Section 12.10.1 General

- "The structural design of the types of pipes indicated above may proceed by either of two methods:
 - The direct design method at the strength limit state as specified in Article 12.10.4.2, or
 - The indirect design method at the service limit state as specified in Article 12.10.4.3."

Direct Design

Design Loads Earth Live Fluid Self

STEP 6A

CONCRETE PIPE PLACE 2A COARSE AGGREGATE WATERIAL, IN LIFTS 4" THICK, ADJACENT TO THE LOWER HAUNCHES TO A HEIGHT OF 0.6 Do. COMPACT TO 95% SPD. TEST THE SIDE BACKFULL WATERIAL AND CONTINUE EMBANKMENT IN ACCORDANCE WITH PUBLICATION 408, SECTION 601.

PLACE UNCOMPACTED SUITABLE MATERIAL OVER PIPE. (DO NOT COMPACT.) BACKFILL SIDES AND COMPACT. CONTINUE EMBANKMENT.

Installation Requirements

Design Forces Moment Thrust Shear

Design

 $g\phi d - N_u - \sqrt{g} \left[g(\phi d)^2 - \overline{N_u(2\phi d - h) - 2M_u} \right]$ $A_s \geq$ f_{v}

Pipe Requirements

	TYPE A STANDARD INSTALLATION - STEEL AREAS (in. ² /ft.)												
	Required Fill/Cover Height												
Dia.	Wall Thick.	f′c (psi)	H∠1.5′	1.5′ ≟ H∠ 2′	2′ ≟ H∠ 3′	3′ ≤ H ≤ 7'	7′ ≟ II ∠ 10′	15′	20′	25′	30′	40′	H ~ 40'
36 "	4 ■	4000	0.19	0.18	0.14	0.11	0.12	0.16	0.21	0.28	0.39	**	**
			0.13	0.12	0.09	0.07	0.07	0.08	0.11	0.14	0.17	**	**
		6000	*	*	*	*	*	*	*	*	*	0.52	**
			*	*	*	*	*	*	*	*	*	0.22	**
36 •	4¾"	4000	0.16	0.15	0.12	0.10	0.10	0.13	0.17	0.21	0.25	0.50	**
			0.10	0.09	0.07	0.07	0.07	0.07	0.08	0.10	0.12	0.17	**
42 *	41/2 "	4000	0.20	0.19	0.17	0.17	0.17	0.20	0.25	0.36	0.49	**	**
			0.13	0.12	0.10	0.07	0.07	0.10	0.13	0.17	0.21	**	**
42 "	51⁄4"	4000	0.16	0.16	0.14	0.14	0.14	0.16	0.21	0.25	0.37	**	**
			0.10	0.10	0.08	0.07	0.07	0.08	0.10	0.12	0.15	**	**
		5000	*	*	*	*	*	*	*	*	*	0.53	**
			*	*	*	*	*	*	*	*	*	0.20	**
48 *	5 M	4000	0.18	0.20	۷	-0.19-	٨	0.23	0.31	0.45	0.62	**	**
			0.11	0.13	۷	-0.12-	٨	0.12	0.16	0.20	0.24	**	**
48 •	5¾"	4000	0.18	0.17	٧	-0.16-	٨	0.20	0.25	0.32	0.52	**	**
			0.11	0.10		-0.10-	•	0.07	0.12	0.15	0.18	**	**
		5000	*	*	*	*	*	*	*	*	*	0.71	**
			*	*	*	*	*	*	*	*	*	0.24	**
54 *	5½"	4000	0.21	0.21	۷	0.20	٨	0.26	0.38	0.55	**	**	**
			0.14	0.13	۲	-0.12-	•	0.14	0.18	0.23	**	**	**
		5000	*	*	*	*	*	*	*	*	0.64	**	**
			*	*	*	*	*	*	*	*	0.26	**	**
54	61⁄4"	4000	0.19	0.18	-	0.18-	-	0.23	0.29	0.45	0.68	**	**
			0.12	0.11	۷	-0.10-	٨	0.11	0.14	0.18	0.22	**	**

Indirect Design (Class of Pipe)

 $D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FIL}}\right)$

Relating Installed Load to Test Load

Test Condition

TABLE 2 Design Requirements for Class II Reinforced Concrete Pipe⁴

NOTE 1-See Section 5 for basis of acceptance specified by the owner. The strength test requirements in pounds-force per linear foot of pipe under the three-edge-bearing method shall be either the D-load (test load expressed in pounds-force per linear foot per foot of diameter) to produce a 0.01-in. crack, or the D-loads to produce the 0.01-in. crack and the ultimate load as specified below, multiplied by the internal diameter of the pipe in feet.

							-	-				
		D-load	d to produc	ce a 0.01-in. crack			1000					
		D-load	d to produce	ce the ultimate load			1500					
	Reinforcement, in. ² /linear ft of pipe wall											
Internal				Wall B					Wall C			
Desig-		Concrete	4000 psi	Concrete Strength, 4000 psi					Concrete Strength, 4000 psi			
nated Diameter, in.	Wall Thick-	Circ Reinforc	ular æment ^C	Elliptical	Wall Thick- ness, in.	Circ Reinford	Circular Reinforcement ^C Elliptical		Wall Thick-	Circular Reinforcement ^C		Elliptical
	ness, in.	Inner Cage	Outer Cage	Reinforcement ^D		Inner Cage	Outer Cage	Reinforcement ^D	ness, in.	Inner Cage	Outer Cage	Reinforcement ^D
12	13⁄4	0.07 ^B			2	0.07 ^B			23⁄4	0.07 ^B		
15	11%	0.07 ^B			21/4	0.07 ^B			3	0.07 ^B		
18	2	0.07 ^B		0.07 ^B	21/2	0.07 ^B		0.07 ^B	31/4	0.07 ^B		0.07 ^B
21	21/4	0.12		0.10	23/4	0.07 ^B		0.07 ^B	31/2	0.07 ^B		0.07 ^B
24	21/2	0.12		0.11	3	0.07 ^B		0.07 ^B	33/4	0.07 ^B		0.07 ^B
27	25/8	0.15		0.12	31/4	0.12		0.11	4	0.07 ^B		0.07 ^B
30	23/4	0.15		0.14	31/2	0.14		0.12	41/4	0.07 ^B		0.07 ^B

Design Loads

Earth

Live

Fluid

Self

Installation **Requirements**

5

Suggested Steel Areas for the Test condition

Benefits of the Indirect Design Method

- Its validity has been proven over time
- It is a simple method to use
- It is a proof-of-performance method

Intention for Direct Design

- Used for higher strength pipe that can not be found in ASTM/AASHTO Tables
- Used for larger diameter pipes
- Used for specific loads and load cases
- Used when stirrup reinforcement is required

Standard Installations

Standa	rd Installa	ations	Soil 8	Min.	Installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side	
Compa	Overfill Soil Category I, II, or III	 S.		Excavation line as required	Туре 1	$D_0/24$ minimum, not less than 75 mm (3"). If rock foundation, use $D_0/12$ minimum, not less than 150 mm (6").	95% Category I	90% Category I, 95% Category II, or 100% Category III	
Springline -	Do/6 (Min.) Do			Haunch - See Table Lower Side See Table	Type 2	$D_0/24$ minimum, not less than 75 mm (3"). If rock foundation, use $D_0/12$ minimum, not less than 150 mm (6").	90% Category I or 95% Category II	85% Category I, 90% Category II, or 95% Category III	
Bedding					Туре 3	$D_O/24$ minimum, not less than 75 mm (3"). If rock foundation, use $D_O/12$ minimum, not less than 150 mm (6").	85% Category I, 90% Category II, or 95% Category III	85% Category I, 90% Category II, or 95% Category III	
Outer Beddir materials ar compaction eau side, san requiremen as hauno	ng Foundation the ts th	on ur fo	ncompacted adding except r Type 4		Туре 4	No bedding required, except if rock foundation, use	No compaction required, except if Category III, use 85%	No compaction required, except if Category III, use 85%	
	Representative S	oil Types Standard	Percent	Compaction Modified		less than 150 mm (6").	Category III	Category III	
SIDD Soil	USCS,	AASHTO	Proctor	Proctor			anna an		
Gravelly Sand (Category 1)	SW, SP, GW, GP	A1,A3	100 95 90 85 80 61	95 90 85 80 75 59	Notes: 1. Compaction ar minimum stand Proctor values 2. The trench top top sholl be po	gory I soil material with for equivalent modified I grade or, for roadways, its m of the pavement base e same compaction as space to attain the			
Sandy Silt (Category II)	GM, SM, ML, Also GC, SC with less than 20% passing #200 sieve	A2, A4	100 95 90 85 80 49	95 90 85 80 75 46	 Soil in bedding specified for th The trench wid specified comp 				
Silty Clay (Category III)	CL, MH, GC, SC	A5, A6	100 95 90 85 80 45	90 85 80 75 70 40	 				

 \bigcirc

Soil / Pipe System

Stronger Pipe + Lesser Quality Installation or Lesser Strength Pipe + High Quality Installation

Installation Conditions

Embankment Installation

Natural Ground

Vertical Pressures – Positive Projecting Embankment

Earth Load on Rigid Pipe

Earth loads on concrete pipe

Trench vs Positive-Projecting Embankment

Transition Width is the point at which the benefit becomes negligible

Greater Than Transition Width

 \bigcirc

AASHTO LRFD 12.10.2.1

 "Standard installations for both embankments and trenches shall be designed for positive projection, embankment loading conditions where F_e shall be taken as the vertical arching factor, VAF, specified in Table 12.10.2.1-3 for each type of standard installation."

Soil Load

- $W_E = F_e \gamma_s B_c H$
 - γ_s = unit weight of soil (pcf)
 - B_c = outside diameter of pipe (ft)
 - H = fill height (ft)
 - F_e = soil-structure interaction factor (Vertical Arching Factor) Pipe – Section 12.10.2.1-1

Soil Load

		Installation Type						
	1	2	3	4				
VAF	1.35	1.40	1.40	1.45				
HAF	0.45	0.40	0.37	0.30				
Al	0.62	0.85	1.05	1.45				
A2	0.73	0.55	0.35	0.00				
A3	1.35	1.40	1.40	1.45				
A4	0.19	0.15	0.10	0.00				
A5	0.08	0.08	0.10	0.11				
<i>A6</i>	0.18	0.17	0.17	0.19				
а	1.40	1.45	1.45	1.45				
b	0.40	0.40	0.36	0.30				
С	0.18	0.19	0.20	0.25				
е	0.08	0.10	0.12	0.00				
f	0.05	0.05	0.05					
U	0.80	0.82	0.85	0.90				
v	0.80	0.70	0.60					

C

Weight of Fluid

Pipe Area = $\pi \times (ID/24)^2$

 W_f = Pipe Area x γ_w

Live Load

D-Load Equation

$$D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FLL}}\right)$$
(12.10.4.3.1-1)

 B_F = Bedding Factor

- Bf = Bedding factors
- M_{FIELD} = Maximum moment in pipe under field loads before failure, (inch-pounds)
- M_{TEST} = Maximum moment in pipe under three-edge bearing test before failure, (inch-pounds)

$$M = 0.170 W_e r$$
 $M = 0.318 P r$

 $W_{e}/P = 1.9 = B_{f}$

Bedding Factors

 $M = 0.170 W_e r$

M = 0.318 P r

M = ? **P r**

Standard Installation Requirements

T . 11 . 1		Haunch and Outer	
Installation Type	Bedding Thickness	Bedding	Lower Side
Type 1	For soil foundation, $D_o/24.0$ in.	95% Category I	90% Category I,
	minimum, not less than 3.0 in. For		95% Category II, or
	rock foundation, use $D_o/12.0$ in.		100% Category III,
	minimum., not less than 6.0 in.		or natural soils of
			equal firmness
Type 2—Installations	For soil foundation, $D_0/24.0$ in.	90% Category I or	85% Category I,
are available for	minimum, not less than 3.0 in. For	95% Category II	90% Category II,
horizontal elliptical,	rock foundation, use $D_o/12.0$ in.		95% Category III,
vertical elliptical and	minimum, not less than 6.0 in.		or natural soils of
arch pipe			equal firmness
Type 3—Installations	For soil foundation, $D_o/24.0$ in.	85% Category I, 90%	85% Category I,
are available for	minimum, not less than 3.0 in. For	Category II, or 95%	90% Category II,
horizontal elliptical,	rock foundation, use $D_o/12.0$ in.	Category III	95% Category III,
vertical elliptical and	minimum, not less than 6.0 in.		or natural soils of
arch pipe			equal firmness
Type 4	For soil foundation, no bedding	No compaction	No compaction
	required. For rock foundation, use	required, except if	required, except if
	$D_0/12.0$ in minimum, not less than	Category III, use	Category III, use
	6.0 in,	85% Category III	85% Category III or
			natural soil of equal
			firmness

Table 27.5.2.2-2---Standard Trench Installation Soils and Minimum Compaction Requirements

Heger Distribution Drawn to Scale

Embankment Earth Load Bedding Factor

Table 12.10.4.3.2a-1—Bedding Factors for Circular Pipe

	Standard Installations					
Pipe Diameter, in.	Type 1	Type 2	Туре 3	Type 4		
12	4.4	3.2	2.5	1.7		
24	4.2	3.0	2.4	1.7		
36	4.0	2.9	2.3	1.7		
72	3.8	2.8	2.2	1.7		
144	3.6	2.8	2.2	1.7		

$$\bigcirc$$

Minimum Bedding Factor

Type 4 Trench $B_f = 1.5$ Type 4 Embankment $B_f = 1.7$

Soil-Structure Dependence for RCP

SI Type	Min. B _f	Actual B _f	Dep. on Pipe (%)	Dep. On Soil (%)
4	1.7	1.7	(1.7/1.7)*100 = 100	100 – 100 = 0
3	1.7	2.3	(1.7/2.3)*100 = 74	100 – 74 = 26
2	1.7	2.9	(1.7/2.9)*100 = 59	100 – 59 = 41
1	1.7	4.0	(1.7/4.0)*100 = 43	100 – 43 = 57

 \mathcal{C}

D-Load Equation

$$D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FLL}}\right)$$
(12.10.4.3.1-1)

where:

- B_{FE} = earth load bedding factor specified in Article 12.10.4.3.2a or Article 12.10.4.3.2b
- B_{FLL} = live load bedding factor specified in Article 12.10.4.3.2c
- S_i = internal diameter of pipe (in.)
- W_E = total unfactored earth load specified in Article 12.10.2.1 (kip/ft)
- W_F = total unfactored fluid load in the pipe as specified in Article 12.10.2.2 (kip/ft)
- W_L = total unfactored live load on unit length pipe specified in Article 12.10.2.3 (kip/ft)

0.01" Crack

 $D_{0.01} = \text{load (lbs/ft/ft) to produce 0.01" crack, 12" long, 1/16" deep}$

0.010" Feeler Gauge to check crack size

Concrete Pipe Design Considerations

- Three-edge Bearing Test
 - Flexure
 - Crack Control
 - Shear
 - Radial Tension
STEEL REINFORCEMENT REQUIREMENTS

versus

HEIGHT OF COVER

60" DIAMETER, 6" B WALL, f_c ' = 5000psi, f_s = 65,000psi, TYPE 2 INSTALLATION

Determine the D-Load

$$D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FLL}}\right)$$
(12.10.4.3.1-1)

$$D = \left(\frac{12}{48}\right) \left(\frac{2500 \text{ lbs/ft} + 784 \text{ lbs/ft}}{2.87} + \frac{3904 \text{ lbs/ft}}{2.2}\right)$$

D_{0.01} = 730 lbs/ft/ft

Reinforced Pipe Classes for 0.01 Inch Crack Per ASTM C 76 (lbs/ft/ft)							
Class I	≤ 800						
Class II	<mark>≤ 1</mark> 000						
Class III	<mark>≤ 1</mark> 350						
Class IV	≤ 2000						
Class V	≤ 3000						
Special Design	> 3000						

Indirect Design Process

- 1. Determine pipe installation method
- 2. Select bedding / standard installation
- 3. Calculate earth load
- 4. Calculate live load
- 5. Determine bedding factors
- 6. Factor of safety (Service Load)
- 7. Select pipe strength

Arch and Elliptical Pipe

Standard Installations for Arch and Elliptical Pipe

 \mathcal{C}

Standard Installations for Arch and Elliptical Pipe

Table 27.5.2.2-1—Standard Embankment Installation Soils and Minimum Compaction Requirements

		Haunch and Outer	
Installation Type	Bedding Thickness	Bedding	Lower Side
Type 1	For soil foundation, $D_o/24.0$ in.	95% Category I	90% Category I,
	minimum, not less than 3.0 in. For		95% Category II, or
	rock foundation, use $D_0/12.0$ in.		100% Category III
	minimum, not less than 6.0 in.		
Type 2—Installations	For soil foundation, $D_o/24.0$ in.	90% Category I or	85% Category I,
are available for	minimum, not less than 3.0 in. For	95% Category II	90% Category II, or
horizontal elliptical,	rock foundation, use $D_0/12.0$ in.		95% Category III
vertical elliptical and	minimum, not less than 6.0 in.		
arch pipe			
Type 3—Installations	For soil foundation, $D_o/24.0$ in.	85% Category I, 90%	85% Category I,
are available for	minimum., not less than 3.0 in. For	Category II, or 95%	90% Category II, or
horizontal elliptical,	rock foundation, use $D_0/12.0$ in.	Category III	95% Category III
vertical elliptical and	minimum, not less than 6.0 in.		
arch pipe			
Type 4	For soil foundation, no bedding	No compaction	No compaction
	required. For rock foundation, use	required, except if	required, except if
	$D_o/12.0$ in. minimum, not less than	Category III, use	Category III, use
	6.0 in.	85% Category III	85% Category III

Bedding Factors

 $M = 0.170 W_e r$

M = 0.318 P r

M = ? **P r**

D-Load Equation

$$D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FLL}}\right)$$
(12.10.4.3.1-1)

where:

- B_{FE} = earth load bedding factor specified in Article 12.10.4.3.2a or Article 12.10.4.3.2b
- B_{FLL} = live load bedding factor specified in Article 12.10.4.3.2c
- S_i = internal diameter of pipe (in.)
- W_E = total unfactored earth load specified in Article 12.10.2.1 (kip/ft)
- W_F = total unfactored fluid load in the pipe as specified in Article 12.10.2.2 (kip/ft)
- W_L = total unfactored live load on unit length pipe specified in Article 12.10.2.3 (kip/ft)

Embankment Earth Load Bedding Factor

Table 12.10.4.3.2a-1—Bedding Factors for Circular Pipe

	Standard Installations						
Pipe Diameter, in.	Type 1	Type 2	Type 3	Type 4			
12	4.4	3.2	2.5	1.7			
24	4.2	3.0	2.4	1.7			
36	4.0	2.9	2.3	1.7			
72	3.8	2.8	2.2	1.7			
144	3.6	2.8	2.2	1.7			

12.10.4.3.2b—Earth Load Bedding Factor for Arch and Elliptical Pipe

 \mathcal{C}

Bedding Factor Equation for Arch and Elliptical Pipe

12.10.4.3.2b—Earth Load Bedding Factor for Arch and Elliptical Pipe

The bedding factor for installation of arch and elliptical pipe shall be taken as:

$$B_{FE} = \frac{C_A}{C_N - xq}$$
(12.10.4.3.2b-1)

where:

- C_A = constant corresponding to the shape of the pipe, as specified in Table 12.10.4.3.2b-1
- C_N = parameter that is a function of the distribution of the vertical load and vertical reaction, as specified in Table 12.10.4.3.2b-1
- x = parameter that is a function of the area of the vertical projection of the pipe over which lateral pressure is effective, as specified in Table 12.10.4.3.2b-1
- q = ratio of the total lateral pressure to the total vertical fill load specified herein

Bedding Factor Parameters for Arch and Elliptical Pipe

Table 12.10.4.3.2b-1-Design Values of Parameters in Bedding Factor Equation

Pipe Shape	CA	Installation Type	C_N	Projection Ratio, p	x
		2	0.630	0.9	0.421
Horizontal Elliptical	1 2 2 7			0.7	0.369
and Arch	1.557	3	0.763	0.5	0.268
				0.3	0.148
		2	0.516	0.9	0.718
Vertical Elliptical	1.021			0.7	0.639
	1.021	3	0.615	0.5	0.457
				0.3	0.238

The value of the parameter q is taken as:

• For arch and horizontal elliptical pipe:

$$q = 0.23 \frac{p}{F_e} \left(1 + 0.35 p \frac{B_e}{H} \right)$$
 (12.10.4.3.2b-2)

• For vertical elliptical pipe:

$$q = 0.48 \frac{p}{F_e} \left(1 + 0.73 p \frac{B_e}{H} \right)$$
 (12.10.4.3.2b-3)

Comparison of Circular vs. Elliptical

 $B_{FE} = \frac{C_A}{C_N - xq}$

RCP Elliptical – 38 x 60								
Installation Type	Min. Bedding	Embankme	VAF					
	C _A /C _N	H = 5 ft.	H = 5 ft. H = 10 ft.					
2	2.12	2.46	2.40	1.4				
3	1.75	1.82	1.81	1.4				
p = 0.9 for Type 2, and p = 0.5 for Type 3								

RCP Circular – 60								
Installation	stallation Min. Embankment Bedding							
Туре	Bedding	H = 5 ft.	H = 10 ft.					
2	1.9	2.83	2.83	1.4				
3	1.7	2.23	2.23	1.4				

The End jbeakley@concretepipe.org

Example Circular RCP

Indirect Design Process

- 1. Determine pipe installation method
- 2. Select bedding / standard installation
- 3. Calculate earth load
- 4. Calculate live load
- 5. Determine bedding factors
- 6. Factor of safety (Service Load)
- 7. Select pipe strength

Example Problem

- Pipe = 48" Circular Pipe
- Fill Height = 15 ft.

- Bedding = 90% Compaction of Granular Material up to Springline
- Live Load = AASHTO HL-93
- Direction of Traffic = Parallel to Span

Pipe Information

Circular Pipe

- ID = 48 inches
- t = 48/12 + 1.75 = 5.75 inches
 - A C-wall pipe is conservatively assumed
- $B_c = 48 + 2(5.75) = 4.96$ feet

Installation Information

• Standard Installation = Type 2

- 90% compaction of a granular material
- Soil Unit Weight γ_s = 120 pcf
- Vertical Arching Factor VAF = 1.40

AASHTO LRFD 12.10.2.1

Table 12.10.2.1-3 Coefficients for use with Figure 1.

	Installation Type						
	1	2	3	4			
VAF	1.35	1.40	1.40	1.45			
HAF	0.45	0.40	0.37	0.30			
Al	0.62	0.85	1.05	1.45			
A2	0.73	0.55	0.35	0.00			
A3	1.35	1.40	1.40	1.45			
A4	0.19	0.15	0.10	0.00			
A5	0.08	0.08	0.10	0.11			
A6	0.18	0.17	0.17	0.19			
а	1.40	1.45	1.45	1.45			
Ь	0.40	0.40	0.36	0.30			
с	0.18	0.19	0.20	0.25			
е	0.08	0.10	0.12	0.00			
f	0.05	0.05	0.05	_			
u	0.80	0.82	0.85	0.90			
ν	0.80	0.70	0.60				

 \mathcal{C}

Earth Load on Pipe

 $PL = \gamma_s \times B_c \times H$ $W_e = VAF \times PL$

Circular

PL = 120 pcf x 4.96 ft x 15 ft PL = 8928 lbs/ft

 W_e = 1.40 x 8928 lbs/ft W_e = 12,500 lbs/ft

Pipe Area = $\pi \times (ID/24)^2$ Pipe Area = 12.57 ft² Pipe Area = $\pi x (48/24)^2$

 W_f = Pipe Area x γ_w W_f = 784 lbs/ft $W_f = 12.57 \text{ ft}^2 \times 62.4 \text{ pcf}$

Live Load

- H = 15 ft
- H > 8 ft
- H > ID = 4 ft
- Live load need not be considered.

Determine the Earth Load Bedding Factor

Table 12.10.4.3.2a-1 Bedding Factors for Circular Pipe.

Pipe Diameter,	Standard Installations					
in.	Type 1	Type 2	Type 3	Type 4		
12	4.4	3.2	2.5	1.7		
24	4.2	3.0	2.4	1.7		
36	4.0	2.9	2.3	1.7		
72	3.8	2.8	2.2	1.7		
144	3.6	2.8	2.2	1.7		

$$B_{f36} = 2.9$$

$$B_{f72} = 2.8$$

$$B_{FE} = B_{f36} - \left(\frac{ID - 36}{72 - 36}\right) (B_{f36} - B_{f72})$$

$$\mathsf{B}_{\mathsf{FE}} = 2.9 - \left(\frac{48 - 36}{72 - 36}\right) (2.9 - 2.8)$$

B_{FE} = 2.87

Determine the D-Load

$$D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FLL}}\right)$$
(12.10.4.3.1-1)

$$D = \left(\frac{12}{48}\right) \left(\frac{12500 \text{ lbs/ft} + 784 \text{ lbs/ft}}{2.87} + \frac{0 \text{ lbs/ft}}{2.2}\right)$$

D_{0.01} = 1157 lbs/ft/ft

ASTM C 76/AASHTO M 170 Pipe Classes

- Class I $D_{0.01}$ = 800 lbs/ft/ft
- Class II $D_{0.01}$ = 1000 lbs/ft/ft
- Class III $D_{0.01}$ = 1350 lbs/ft/ft
- Class IV D_{0.01} = 2000 lbs/ft/ft
- Class V D_{0.01} = 3000 lbs/ft/ft

Fill Height Tables are based on: 1. γs = 120 pcf 2. AASHTO HL-93 live load

Positive Projecting Embankment Condition -this gives conservative results in comparison to trench conditions

	Fill Height in Feet													
Pipe Size (in)	15	16	17	18	19	20	21	22	23	24	25	26	27	28
12	1164	1240	1317	1393	1470	1547	1623	1700	1776	1853	1929	2006	2083	2159
15	1139	1214	1289	1363	1438	1513	1587	1662	1737	1811	1886	1961	2035	2110
18	1130	1204	1278	1351	1425	1499	1573	1647	1720	1794	1868	1942	2015	2089
21	1130	1203	1277	1350	1424	1497	1570	1644	1717	1791	1864	1938	2011	2085
24	1135	1209	1282	1356	1429	1503	1576	1650	1723	1797	1870	1944	2017	2091
27	1135	1208	1282	1355	1428	1501	1574	1648	1721	1794	1867	1940	2014	2087
30	1138	1211	1284	1357	1430	1503	1576	1649	1722	1796	1869	1942	2015	2088
33	1143	1216	1289	1362	1435	1508	1581	1654	1727	1800	1874	1947	2020	2093
36	1149	1222	1295	1369	1442	1515	1588	1662	1735	1808	1881	1954	2028	2101
42	1152	1225	1298	1370	1443	1516	1589	1662	1735	1807	1880	1953	2026	2099
48	1158	1231	1303	1376	1449	1521	1594	1667	1739	1812	1885	1957	2030	2102
54	1166	1239	1311	1384	1457	1529	1602	1674	1747	1820	1892	1965	2037	2110
60	1176	1249	1321	1394	1467	1539	1612	1684	1757	1830	1902	1975	2048	2120
66	1187	1260	1332	1405	1478	1551	1623	1696	1769	1842	1914	1987	2060	2133
72	1199	1272	1345	1418	1490	1563	1636	1709	1782	1855	1928	2001	2074	2147
78	1204	1277	1350	1422	1495	1568	1640	1713	1786	1858	1931	2004	2076	2149
84	1210	1283	1355	1428	1500	1573	1645	1718	1790	1863	1935	2008	2080	2153
90	1216	1289	1361	1433	1506	1578	1650	1723	1795	1867	1940	2012	2084	2157
96	1223	1295	1367	1439	1512	1584	1656	1728	1800	1873	1945	2017	2089	2161
102	1230	1302	1374	1446	1518	1590	1662	1734	1806	1878	1950	2022	2094	2166
108	1237	1309	1381	1453	1524	1596	1668	1740	1812	1884	1956	2028	2100	2172
114	1244	1316	1388	1459	1531	1603	1675	1747	1819	1890	1962	2034	2106	2178
120	1251	1323	1395	1467	1538	1610	1682	1754	1825	1897	1969	2041	2112	2184
126	1259	1330	1402	1474	1545	1617	1689	1760	1832	1904	1975	2047	2119	2190
132	1266	1338	1410	1481	1553	1624	1696	1768	1839	1911	1982	2054	2125	2197
138	1274	1346	1417	1489	1560	1632	1703	1775	1846	1918	1989	2061	2132	2204
144	1282	1353	1425	1496	1568	1639	1711	1782	1854	1925	1996	2068	2139	2211

D-Load (lb/ft/ft) for Type 2 Bedding

Class I Class IV Class II Class V Class III Special Design

 \bigcirc

Table IA: Classes of Reinforced Concrete Pipe for the Respective Diameters of Pipe and Fill Heights over the Top of the Pipe								
	Туре 1	Type 2	Туре 3	Type 4	Туре 5	Туре 6	Туре 7	
Nominal	Fill Height:	Fill Height:	Fill Height:	Fill Height:	Fill Height:	Fill Height:	Fill Height:	
Diameter in.	3' and less 1' min cover	Greater than 3' not exceeding 10'	Greater than 10' not exceeding	Greater than 15' not exceeding 20'	Greater than 20' not exceeding 25'	Greater than 25' not exceeding 30'	Greater than 30' not exceeding 35'	
12	١٧		111	IV	١٧	v	V	
15	٤V	II	111	IV	١V	v	l v	
18	IV	tl .		1V	IV	V	v	
21	111	II		١V	IV	v	v	
24	111	11	Ш	IV	IV	v	v	
30	١٧	11	111	IV	IV	v	l v	
36	11	11		١٧	IV	v	v	
42	u	11		IV	IV	v	v	
48	H.			. IV	IV	v	l v	
54	Ш	- II	111	IV	IV	v	v	
60	11	l II	111	IV	IV	v	v	
66		. II	111	IV	IV	v	l v	
72	H	EI .		IV	V	V	V	
78	11	11	111	IV	2020	2370	2730	
84	1			IV	2020	2380	2740	
90		l II		1680	2030	2390	2750	
96			113	1690	2040	2400	2750	
102		111	1	1700	2050	2410	2760	
108		1	1360	1710	2060	2410	2770	

Notes: A number indicates the D-Load for the diameter and depth of fill and that a special design is required. Design assumptions; Water filled pipe, Type 2 bedding and Class C Walls Pipe Culverts

Example Elliptical RCP

Indirect Design Process

- 1. Determine pipe installation method
- 2. Select bedding / standard installation
- 3. Calculate earth load
- 4. Calculate live load
- 5. Determine bedding factors
- 6. Factor of safety (Service Load)
- 7. Select pipe strength

Example Problem

- Pipe = 38" x 60" (48" Equiv.) Elliptical Pipe
- Fill Height = 15 ft.

- Bedding = 90% Compaction of Granular Material up to Springline
- Live Load = AASHTO HL-93
- Direction of Traffic = Parallel to Span

Pipe Information

Elliptical Pipe

- Span = 60 inches
- t = 5.5 inches (ASTM C507)
- $B_c = 60 + 2(5.5) = 5.92$ feet

Installation Information

• Standard Installation = Type 2

- 90% compaction of a granular material
- Soil Unit Weight γ_s = 120 pcf
- Vertical Arching Factor VAF = 1.40

AASHTO LRFD 12.10.2.1

Table 12.10.2.1-3 Coefficients for use with Figure 1.

	Installation Type						
	1	2	3	4			
VAF	1.35	1.40	1.40	1.45			
HAF	0.45	0.40	0.37	0.30			
Al	0.62	0.85	1.05	1.45			
A2	0.73	0.55	0.35	0.00			
A3	1.35	1.40	1.40	1.45			
A4	0.19	0.15	0.10	0.00			
A5	0.08	0.08	0.10	0.11			
A6	0.18	0.17	0.17	0.19			
а	1.40	1.45	1.45	1.45			
Ь	0.40	0.40	0.36	0.30			
с	0.18	0.19	0.20	0.25			
е	0.08	0.10	0.12	0.00			
f	0.05	0.05	0.05	_			
и	0.80	0.82	0.85	0.90			
ν	0.80	0.70	0.60				

 \bigcirc

Earth Load on Pipe

 $PL = \gamma_s \times B_c \times H$ $W_e = VAF \times PL$

Elliptical

PL = 120 pcf x 5.92 ft x 15 ft PL = 10656 lbs/ft

$$W_e = 1.40 \times 10656 \text{ lbs/ft}$$

 $W_e = 14920 \text{ lbs/ft}$

• 38" x 60" Elliptical is a 48" Circular Equivalent

Pipe Area = $\pi \times (ID/24)^2$ Pipe Area = 12.57 ft²

Pipe Area = $\pi x (48/24)^2$

 W_f = Pipe Area x γ_w W_f = 784 lbs/ft $W_f = 12.57 \text{ ft}^2 \times 62.4 \text{ pcf}$

From the ACPA Concrete Pipe Design Manual - Online

ASTM C 507-Reinforced Concrete Elliptical Culvert, Storm Drain and Sewer Pipe										
Equivalent Round Size, inches	Minor Axis, inches	Approximate Weight, pounds per foot								
18	14	23	2 3/4	1.8	195					
24	19	30	3 1/4	3.3	300					
27	22	34	3 1/2	4.1	365					
30	24	38	3 3/4	5.1	430					
33	27	42	3 3/4	6.3	475					
36	29	45	4 1/2	7.4	625					
39	32	49	4 3/4	8.8	720					
42	34	53	5	10.2	815					
48	38	60	5 1/2	12.9	1000					
54	43	68	6	16.6	1235					

Illustration 5.3 Dimensions and Approximate Weights of Elliptical Concrete Pipe

Live Load

• H = 15 ft

74

- H > 8 ft
- H > ID = 5 ft
- Live load need not be considered.

Determine the Earth Load Bedding Factor

Table 12.10.4.3.2b-1—Design Values of Parameters in Bedding Factor Equation

Pipe Shape	C_A	Installation Type	C_N	Projection Ratio, p	x
		2	0.630	0.9	0.421
Horizontal Elliptical	1.337			0.7	0.369
and Arch		3	0.763	0.5	0.268
				0.3	0.148
		2	0.516	0.9	0.718
Vartical Elliptical	1.021			0.7	0.639
vertical Emplicat		3	0.615	0.5	0.457
				0.3	0.238

The value of the parameter q is taken as:

• For arch and horizontal elliptical pipe:

$$q = 0.23 \frac{p}{F_e} \left(1 + 0.35 p \frac{B_e}{H} \right)$$
 (12.10.4.3.2b-2)

• For vertical elliptical pipe:

$$q = 0.48 \frac{p}{F_e} \left(1 + 0.73 p \frac{B_e}{H} \right)$$
 (12.10.4.3.2b-3)

$$q = 0.23 \frac{0.9}{1.40} \left(1 + 0.35(0.9) \frac{5.92}{15} \right)$$

q = 0.167

Remember:

$$F_e$$
 = 1.40

 B_c = 5.92 ft

 H = 15 ft

Determine the Earth Load Bedding Factor

12.10.4.3.2b—Earth Load Bedding Factor for Arch and Elliptical Pipe

The bedding factor for installation of arch and elliptical pipe shall be taken as:

$$B_{FE} = \frac{C_A}{C_N - xq}$$
(12.10.4.3.2b-1)

Table 12.10.4.3.2b-1-Design Values of Parameters in Bedding Factor Equation

Pipe Shape	C_A	Installation Type	C_N	Projection Ratio, p	x
		2	0.630	0.9	0.421
Horizontal Elliptical	1.337			0.7	0.369
and Arch		3	0.763	0.5	0.268
				0.3	0.148
		2	0.516	0.9	0.718
Vertical Elliptical	1.021			0.7	0.639
verucai Emplicai		3	0.615	0.5	0.457
				0.3	0.238

<u>Use:</u> $C_A = 1.337$ $C_N = 0.630$ x = 0.421

<u>Remember:</u> *q* = 0.167

 $B_{FE} = \frac{1.337}{0.630 - (0.421)(0.167)}$

 $B_{FE} = 2.39$

Determine the D-Load

$$D = \left(\frac{12}{S_i}\right) \left(\frac{W_E + W_F}{B_{FE}} + \frac{W_L}{B_{FLL}}\right)$$
(12.10.4.3.1-1)

$$D = \left(\frac{12}{60}\right) \left(\frac{14920 \text{ lbs/ft} + 784 \text{ lbs/ft}}{2.39} + \frac{0 \text{ lbs/ft}}{2.2}\right)$$

 $D_{0.01} = 1314 \text{ lbs/ft/ft}$

ASTM C 507/AASHTO M 207 Pipe Classes

- Class HE-A $D_{0.01}$ = 600 lbs/ft/ft
- Class HE-I $D_{0.01}$ = 800 lbs/ft/ft
- Class HE-II $D_{0.01} = 1000 \text{ lbs/ft/ft}$
- Class HE-III $D_{0.01}$ = 1350 lbs/ft/ft
- Class HE-IV D_{0.01} = 2000 lbs/ft/ft

Horizontal Elliptical Pipe

Fill Height Tables are based on:

D-Load (lb/ft/ft) for Type 2 Bedding

1. $\gamma_s = 120 \text{ pcf}$

79

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition - this gives conservative results in comparison to trench conditions

4. A projection ratio of 0.9.

Fill Height (feet)													
Inside Rise x Inside Span	12	14	15	16	17	10	10	20	21	22	22	24	25
(incres)	13	14	15	10	17	10	19	20	21	22	23	24	20
14 x 23	1166	1255	1343	1431	1520	1608	1697	1785	1873	1962	2050	2139	2227
19 x 30	1152	1239	1326	1413	1500	1586	1673	1760	1847	1934	2020	2107	2194
22 x 34	1145	1231	1317	1403	1489	1575	1661	1747	1833	1919	2005	2092	2178
24 x 38	1140	1225	1311	1396	1482	1567	1653	1738	1823	1909	1994	2080	2165
27 x 42	1126	1210	1294	1378	1462	1546	1630	1714	1798	1882	1967	2051	2135
29 x 45	1149	1235	1320	1406	1492	1577	1663	1748	1834	1920	2005	2091	2177
32 x 49	1146	1231	1316	1402	1487	1572	16578	1742	1828	1913	1998	2083	2168
34 x 53	1144	1229	1314	1399	1483	1568	1653	1738	1823	1907	1992	2077	2162
38 x 60	1146	1230	1315	1399	1484	1568	1653	1737	1822	1906	1990	2075	2159
43 x 68	1145	1229	1913	1397	1481	1565	1649	1733	1817	1901	1985	2069	2153
48 x 76	1145	1229	1313	1396	1480	1563	1647	1731	1814	1898	1981	2065	2148
53 x 83	1150	1233	1317	1400	1484	1567	1651	1734	1817	1901	1984	2068	2151
58 x 91	1151	1235	1318	1401	1484	1568	1651	1734	1817	1900	1983	2067	2150
63 x 98	1157	1240	1323	1406	1489	1572	1655	1738	1822	1905	1988	2071	2154
68 x 106	1159	1242	1325	1408	1491	1574	1657	1740	1823	1905	1988	2071	2154
72 x 113	1165	1248	1331	1413	1496	1579	1662	1745	1828	1911	1993	2076	2159
77 x 121	1168	1251	1333	1416	1499	1582	1664	1747	1830	1912	1995	2078	2160
82 x 128	1170	1253	1335	1418	1500	1583	1665	1747	1830	1912	1994	2077	2159
87 x 136	1216	1253	1335	1417	1499	1581	1663	1745	1827	1909	1991	2073	2155
92 x 143	1222	1259	1341	1423	1506	1588	1670	1752	1834	1916	1998	2080	2161
97 x 151	1226	1304	1345	1427	1509	1591	1673	1755	1837	1919	2001	2083	2165
106 x 166	1237	1314	1393	1438	1520	1602	1684	1766	1847	1929	2011	2093	2175
116 x 180	1249	1327	1405	1484	1563	1614	1696	1778	1860	1942	2024	2106	2188

Table IIB: CLASSES OF REINFORCED CONCRETE ELLIPTICALL AND REINFORCED CONCRETE ARCH PIPE FOR THE RESPECTIVE EQUIVALENT ROUND SIZE OF PIPE AND FILL HEIGHTS OVER THE TOP OF PIPE

	Deiefersed					Туре 1		Туре 2		Туре 3	
Equivalent Round Size (in.)		Reinforced Concrete Arch Pipe (in.)		Minimum Cover	Fill Height: 3' and less		Fill Height: Greater than 3' not exceeding 10'		Fill Height: Greater than 10' not exceeding 15'		
	Span	Rise	Span	Rise	RCCP HE & A	HE	Arch	HE	Arch	HE	Arch
15	23	14	18	11	1' -0"	HE-III	A-III	HE-III	A-111	HE-IV	A-IV
18	23	14	22	13 1/2	1' -0"	HE-III	A-III	HE-III	A-111	HE-IV	A-IV
21	30	19	26	15 1/2	1' -0"	HE-III	A-III	HE-III	A-111	HE-IV	A-IV
24	30	19	28 1/2	18	1' -0"	HE-III	A-111	HE-III	A-III	HE-IV	A-IV
27	34	22	36 1/4	22 1/2	1' -0"	HE-III	A-111	HE-III	A-III	HE-IV	A-IV
30	38	24	36 1/4	22 1/2	1' -0"	HE-III	A-III	HE-III	A-III	HE-IV	A-IV
36	45	29	43 3/4	26 5/8	1' -0"	HE-II	A-II	HE-III	A-111	HE-IV	A-IV
42	53	34	51 1/8	31 5/16	1' -0"	HE-I	A-li	HE-III	A-111	HE-IV	A-IV
48	60	38	58 1/2	36	1' -0"	HE-I	A-II	HE-III	A-111	1460	1450
54	68	43	65	40	1' -0"	HE-I	<u>A-II</u>	HE-III	A-III	1460	1460
60	76	48	73	45	1' -0"	HE-1	A-11	HE-III	A-III	1460	1470
66	83	53	88	54	1' -0"	HE-1	A-II	HE-III	A-I]]	1470	1480
72	91	58	88	54	1' -0"	HE-1	A-11	HE-III	A-III	1470	1480

Notes: A number indicates the D-Load for the diameter and depth of fill and that a special design is required. Design assumptions; Water filled pipe, AASHTO Type 2 installation per AASHTO LRFD Table 12.10.2.1-1

