

Manufacturing Methods Reinforced Concrete Pipe and Boxes

Donald E. McNutt, PE (Don) ACPA Great Lakes Region Engineer dmcnutt@concretepipe.org 2021PIPE SCHOOL FEBRUARY

REMAIN VIGILANT

CHOOSE TO NEVER COMPROMISE.

Today's Agenda

Mix Designs Batching Box Culvert Reinforcing Cages Box Culvert Production Method Pipe Reinforcing Cages Pipe Production Methods Curing

Learning Outcomes

Describe the ingredients in any concrete mix design.
 Explain the importance of the water to cement ratio.
 Describe the key components of a batching system.
 Explain how to calculate the area of steel for a given pipe design.
 Explain the key differences between wet cast and dry cast manufacturing.
 Describe the concept of packerhead pipe manufacturing.
 Describe the two key factors of accelerated concrete curing.

Mix Designs

Mix Designs

What is Hydraulic Cement Concrete?

A homogeneous mixture of aggregates held together by a hardened hydraulic cement paste While concrete looks simple, it is really a highly complex material

> What can be said about this sample of concrete?

Hydraulic Cement Concrete – Two Primary Components

Cement Paste

Portland Cement

Water Admixtures

Aggregates

Coarse & Fine Aggregates

Water needs to be drinkable or meet ASTM 1602

gcp applied technologies

Mix Designs

Cement Hydration

Hydration is a chemical reaction between cement and water.

Hydration produces three things:

<u>Calcium Silicate Hydrate</u> (CSH) gel that hold aggregates in place and gives concrete its strength (glue)

<u>Heat</u>

<u>Calcium Hydroxide</u> that fills the remaining voids, does not contribute much to strength

Water / Cement Ratio

It's a calculation:

w/c ~ lbs. of water / lbs. of cement w/c_m ~ lbs. of water / lbs. of cementitious

Often when w/c is discussed its really w/c_m that is intended as the reference

Water cement ratio 0.45 expressed as decimal

ASTM C76 sets limits on water and cement content: Maximum w/c ratio = 0.53 Minimum cementitious = 470 lb/yd³ (5 sack)

Mix Designs

Water, Cement, Aggregates & Admixtures

As the water to cement ratio increases, the strength of a concrete mix decreases.

As the surface area of the aggregate increases the more water will be needed to maintain a given slump.

Coarser Surface Texture Particle Shape Particle Size Distribution

As the air content increases, the strength of the concrete decreases.

Admixtures are added to modify properties of fresh and cured concrete.

Air

Water, Cement, Aggregates & Admixtures

Wet-Mix – 3" Slump

Wet-Mix – Self Consolidating Concrete

Dry-Mix Zero Slump

Mix Designs

Self Consolidating Concrete

SCC is more than flowable concrete

It is a highly engineered fluid with unique Rheological (flow) properties

This is not SCC. You cannot just add water or admix and get SCC!

Which Mix?

	<u>Wet-Mix</u>	<u>Dry-Mix</u>			
w/c	0.45	0.35			
slump	+	0 or -			

initial set 4 hours <1 hour

ASTM C76 sets limits on water and cement content: Maximum w/c ratio = 0.53 Minimum cementitious = 470 lb/yd³ (5 sack)

		CONC	CONCRETE BATCH CALCULATIONS					
Description:	6000 psi - No Fly Ash						Date:	
MATERIAL SOLI	O UNIT WEIGHTS =Spe	cific Gravit	y x 62.4					
Cement:	3.15	x 62.4 =	196.56	pcf		Air Conte	nt Projecte	d
Fly Ash	2 26	x 62 4 =	141 02	pcf				
Stone:	2.20	x 62.4 =	164 11	por		1	% Entraine	ed
Sand:	2.61	x 62.4 =	162.86	pcf		1	% Entrapo	ed
1000 SP-MN	1 198	x 62 4 =	74 76	pcf		2.0	Total	
Add #2	1.2	x 62.4 =	74.88	pcf		2.0	Total	
						Moisture	Content Ag	gregates
		Stone	1620	47.37%	5	3.00	% Stone	
		Sand	1800	52.63%	5	4.50	% Sand	
MOISTURE COM	PENSATION	w/c ratio	0.3					
	Cement (# as weighed)	580	x 1.00 =	580.00	bs. (act)			
	Fly Ash (# as weighed)	0	x 1.00 =	0.00	bs. (act)			
	Stone (# as weigned)	1000.00	/ 1+ % =	1010.04	ios. (act)			
	Sand (# as weighed)	1881.00	/ 1+ % =	1796.36	blbs. (act)			
	Aggregate Water			134.70) lbs.			
	Water Added (gallons)	4.71	x 8.35 =	39.27	lbs.			
	Add #1 (fl.oz.)		=	0.00) lbs.			
	Add #2 (fl.oz.)		=	0.00) lbs.			
BATCH CALCUL	ATIONS							
	Solid Vol. Cement =	580.00	lbs /	196.56	(unit wt) =	2 95	cu ft	
	Solid Vol. Fly Ash =	0.00	lbs. /	141.02	2 (unit wt.) =	0.00	cu.ft.	
	Solid Vol. Stone =	1618 54	lbs /	164 11	(unit wt) =	9.86	cuft	
	Solid Vol. Sand =	1796.36	lbs /	162.86	(unit wt) =	11.03	cu ft	
	Aggregate Water =	134 70	lbs /	62.40	(unit wt) =	2 16	cuft	
	Added Water =	39.27	lbs /	62.40	(unit wt.) =	0.63	cu ft	
	Volume Add #1 -	0.00	lbs./	74.76	(unit wt.) =	0.00	cu ft	
	Volume Add #2 =	0.00	lbs /	74.88	(unit wt) =	0.00	cu ft	
		0.00	103.7	74.00	(unit wt.) –	0.00	6 0 .11.	
					Materials -	26.63	cu ft	
					Air -	0.54	cu ft	
						27 17	cu ft	
					TILLD -	1.01	ound	
CUBIC YARD CA	LCULATIONS					1.01	cu.yu.	
_								
Cement:	580.00	# (act.) /	1.006	cu. yd. /	patch =	576.27	ibs/cu.yd.	
Fly Ash:	0.00	# (act.) /	1.006	cu. yd. /	patch =	0.00	ibs/cu.yd.	
Stone:	1618.54	# (act.) /	1.006	cu. yd. /	batch =	1608.15	lbs/cu.yd.	
Sand:	1796.36	# (act.) /	1.006	cu. yd. /	patch =	1/84.82	ibs/cu.yd.	
Iot. Water:	173.98	# (act.) /	1.006	cu. yd. /	batch =	172.86	lbs/cu.yd.	
Add #1:	0.00	# (act.) /	1.006	cu. yd. /	patch =	0.00	ibs/cu.yd.	
Add #2:	0.00	# (act.) /	1.006	cu. yd. /	batch =	0.00	lbs/cu.yd.	
					Total Wt. =	4142.10	lbs/cu.yd.	
						2.07	ton/cu.yd.	
					Unit Wt -	153 41	ncf	
WATER/CEMENT	RATIO BY WEIGHT						p.,	
	172.86	# water /	576.27	# cement	= 0.30			
CEMENT FACTO	R							
	576.27	lbs. / cu.yo	d. / 94 #/bag	=	6.13	bags/yd.	13.91%	Cementitious
							0.00%	Fly Ash
	Signature:					Date:		

Proper Aggregate Storage

Minimize Segregation

Do not store in conical piles Store in horizontal layers

Proper Aggregate Storage

Minimize Segregation

Do not store in conical piles

Store in horizontal layers

Prevent Contamination

Store on slabs or planking Have storage bins separated by walls Keep gradations within specified limits

Filling Aggregate Bins

Typical Batching Tolerances – ASTM C94

- Cementitious
- Total Water
- Fine Aggregates
- Coarse Aggregates
- Cum. Aggregates
- Admixes
- Calibrate scales annually

+/- 1%

+/- 3%

+/- 2%

+/- 2%

+/- 1%

+/- 3%

Batching

Keys to Quality Batching

Accuracy of Weighing

Scales must hang free and not leak

Scales must empty completely

Check zero weight on a regular basis

Compensating for Moisture in Aggregates

Required for batch consistency & strengths Maintains production efficiency

Sequencing of Materials

Follow mixer manufacture's recommendations

Mixers

Mixer Output

Quantity of concrete needed per day Quantity of concrete needed per hour **Output is measured in:**

ft³ yd³ m³

Actual capacity typically 2/3 of rated capacity

COUNTER CURRENT MIXER

Single Shaft Paddle Mixer

Twin Shaft Ribbon Mixer

Box Reinforcing

OR

Eriksson Culvert

A Better Way to Design Precast/CIP Box Culverts

AREMA / AASHTO / ASTM C1577 DESIGN 3D WIREFRAME GENERATION LOAD RATING CAPABILITIES

TYPICAL BOX REINFORCING NOMENCLATURE

10

...shall contain sufficient longitudinal wires extending through the box section to maintain the shape and position of the reinforcement.

Box Reinforcing

Welded Wire Reinforcement – ASTM A1064

Each Mat is Custom Designed and Ordered per Structural Design

Mesh Benders for Cage Fabrication

Mesh Benders for Cage Fabrication

Box Reinforcing

Wire Cage Spacers

Sets Inside Cover

Sets Cage Spacing

Sets Outside Cover

Box Forms

Box Forms

Wet Cast Forms

Cast with Normal Slump Concrete or SCC Choice of Internal or External Vibration Concrete Must Reach "Stripping" Strength Generally, One Casting per Day Outer Form Must be "Unbolted" to Remove Inner Core Has a Collapsing Mechanism

Wet Cast Forms

Collapsing Inner Core

Walls Pull Away From Inner Box Surface

Taper Not Required

Lubrication Required at Hinges

Cleaning and Maintenance Required

Box Forms

Box Forms

Dry Cast Forms

External Vibration (Outer Form or Core) Cast with Zero Slump Concrete Outer Form and Core Tapered for Stripping Form Strip or Core Strip **Product Stripped Immediately After Casting** Multiple Pours per Shift – Dictated by: Fill Cycle Time Number of Pallets

Bell Forming Header Ente all last

Box – Dry Cast

Box – Dry Cast

Form Strip

Stationary Core (Slight Taper)

Pit Mounted Core

Walking / Working Level

Box – Dry Cast

Form Strip

Bell Forming Header

Formed Bell -

(excess concrete will be removed)

Box – Dry Cast

Form Strip

Box – Dry Cast

Pipe Reinforcing

Pipe Design Methods

Introducing Eriksson Pipe

Indirect Design

Direct Design

Steel Cage – Why & Where?

Minimum cover = 1" Wall < 2-1/2" – minimum cover = 3/4"

Steel Cage – Why & Where?

Figure 2.2. Quadrant Reinforcement Provides Additional Reinforcement in Tension Zones of Pipe Wall.

Pipe Reinforcing

Steel Cage – Why & Where?

C76 - 18

TABLE 4 Design Requirements for Class IV Reinforced Concrete Piper

Note 1-See Section 5 for basis of acceptance specified by the owner.

The strength test requirements in pounds-force per linear foot of pipe under the three-edge-bearing method shall be either the D-load (test load expressed in pounds-force per linear foot per foot of diameter) to produce a 0.01-in. crack, or the D-loads to produce the 0.01-in. crack and the ultimate load as specified below, multiplied by the internal diameter of the pipe in feet.

Internal Designated Diameter, in.		D-load to produ D-load to produ	uce a 0.01-in uce the ultim	ate load		2000 3000								
					Reinford	Reinforcement, in. ² /linear ft of pipe wall								
		Wa		Wall B	}		Wall C							
		Concrete Stre	Concrete Strength, 4000 psi				Concrete Strength, 4000 psi							
	Wall	Circular Reinforcement ^B		Elliptical	Wall	Circu Reinforce	Circular Reinforcement ^B		Wall	Circu Reinforc	Circular Reinforcement ^B			
	in.	Inner Cage	Outer Cage	ment ^C	in.	Inner Cage	Outer Cage	ment ^C	in.	Inner Cage	Outer Cage	ment ^C		
12	13/4	0.15			2	0.07			23/4	0.07 ^D				
15	17/8	0.16			21/4	0.10			3	0.07 ^D				
18	2	0.17		0.15	21/2	0.14		0.11	31/4	0.07 ^D		0.07 ^D		
21	21/4	0.23		0.21	23/4	0.20		0.17	31/2	0.07 ^D		0.07 ^D		
24	21/2	0.29		0.27	3	0.27		0.23	33/4	0.07	0.07	0.08		
27	25/8	0.33		0.31	31/4	0.31		0.24	4	0.08	0.07	0.09		
30	23/4	0.38		0.35	31/2	0.35		0.27	41/4	0.09	0.07	0.10		
33	A			10.000	33/4	0.27	0.16	0.30	41/2	0.11	0.07	0.12		
36	A				4	0.30	0.18	0.33	43/4	0.14	0.08	0.15		
42	A				41/2	0.35	0.21	0.39	51/4	0.20	0.12	0.21		
48	A				5	0.42	0.24	0.47	53/4	0.26	0.16	0.29		
54	A				51/2	0.50	0.30	0.55	61/4	0.34	0.20	0.38		
					(Concrete Strengt	h 5000 ps	i				_		

0.10 in²/linear ft of pipe wall

Pipe Reinforcing

Steel Cage – Welded Wire Fabric

Pipe Reinforcing

Steel Cage – Welded Wire Fabric

Pipe Reinforcing

D-load to produce the ultimate load

Steel Cage – Welded Wire Fabric

How do I use this information?

					Reinforcement, in. ² /linear ft of pipe wall						
		Wa	II A		Wall B						
Internal Designated		Concrete Stree	ngth, 5000 psi		Concrete Strength, 4000 psi						
Diameter, in.	Wall	Circular Reinforcement ^B		Elliptical	Wall	Circu Reinforc	ular ement ^B	Elliptical Wall			
	in.	Inner Cage	Outer Cage	ment ^C	in.	Inner Cage	Outer Cage	ment ^{C} in.			
12	1 3⁄4	0.15			2	0.07		23/4			
15	1 7⁄8	0.16			21/4	0.10		3			
18	2	0.17		0.15	21/2	0.14		0.11 31/4			
21	21/4	0.23		0.21	23/4	0.20		0.17 31/2			
24	21/2	0.29		0.27	3	0.27		0.23 33/4			

3000

3x8 W2.5xW2.0 93"x 600' 1/2x1/2

A = 0.025 x
$$\frac{12}{3}$$
 = 0.10 in²/ft

W = Plain/Smooth, D = Deformed

Pipe Reinforcing

D-load to produce the ultimate load

Steel Cage – Welded Wire Fabric

How do I use this information?

					Reinforcement, in. ² /linear ft of pipe wall						
		Wa	II A		Wall B						
Internal Designated		Concrete Stree	ngth, 5000 psi		Concrete Strength, 4000 psi						
Diameter, in.	Wall	Circular Reinforcement ^B		Elliptical	Wall	Circu Reinforc	ular ement ^B	Elliptical Wall			
	in.	Inner Cage	Outer Cage	ment ^C	in.	Inner Cage	Outer Cage	ment ^{C} in.			
12	1 3⁄4	0.15			2	0.07		23/4			
15	1 7⁄8	0.16			21/4	0.10		3			
18	2	0.17		0.15	21/2	0.14		0.11 31/4			
21	21/4	0.23		0.21	23/4	0.20		0.17 31/2			
24	21/2	0.29		0.27	3	0.27		0.23 33/4			

3000

3x8 W2.5xW2.0 93"x 600' 1/2x1/2

A =
$$0.025 \times \frac{12}{3}$$
 = 0.10 in²/ft

W = Plain/Smooth, D = Deformed

Pipe Reinforcing

D-load to produce the ultimate load

Steel Cage – Welded Wire Fabric

How do I use this information?

					Reinforcement, in. ² /linear ft of pipe wall						
		Wall	A		Wall B						
Internal Designated		Concrete Streng	gth, 5000 psi	Concrete Strength, 4000 psi							
Diameter, in.	Wall Thickness, in.	Circular Reinforcement ^B		Elliptical	Wall	Circular Reinforcement ^B		Elliptical Wall			
		Inner Cage	Outer Cage	ment ^C	in.	Inner Cage	Outer Cage	ment ^C	in.		
12	13⁄4	0.15			2	0.07			23/4		
15	1 7⁄8	0.16			21/4	0.10			3		
18	2	0.17		0.15	21/2	0.14		0.11	31/4		
21	21/4	0.23		0.21	23/4	0.20	_	0.17	31/2		
24	21 /2	0.29		0.27	3	0.27		0.23	33/4		

3000

2x6 W4.5xW2.5 93"x 600' 1/2x1/2

A = 0.045 x
$$\frac{12}{2}$$
 = 0.27 in²/ft

W = Plain/Smooth, D = Deformed

2000 C

Pipe Reinforcing

Steel Cage – Cage Machines

Use reels of cold drawn steel wire.

Longitudinal wires hand fed or continuous feed.

Circumferential wire spacing (pitch) is adjustable.

Wet Cast Forms

Pipe Forms

Cast with Normal Slump Concrete or SCC Choice of Internal or External Vibration Concrete Must Reach "Stripping" Strength Generally, One Casting per Day Outer Form Must be "Expanded" to Remove Inner Core Has a Collapsing Mechanism

Dry Cast Forms

Cast with Zero Slump Concrete Form Strip External Vibration (Outer Form or Core) Outer Form and Core Tapered for Stripping **Product Stripped Immediately After Casting** Multiple Pours per Shift – Dictated by: Fill Cycle Time Number of Pallets

Pipe Forms

Pipe Production

Wet Cast

Vibratory

Packerhead
Pipe – Wet Cast

Pipe – Wet Cast

Pipe – Vibratory

Conveying Concrete to Machine

Baging and a finite and the second of the se

Pipe – Vibratory

1 K. S. M. C. M.

Counter Rotating Packerhead Eliminates Cage Twist

Pipe – Packerhead

Pipe – Packerhead

Curing

Curing – What is It?

Hardening of Concrete

Hydration is a chemical reaction between cement and water.

Hydration produces three things:

<u>Calcium Silicate Hydrate</u> (CSH) gel that hold aggregates in place and gives concrete its strength (glue)

Heat

<u>Calcium Hydroxide</u> that fills the remaining voids, does not contribute much to strength

Accelerated Curing

Rate of hydration increases as ambient temperature increases

Controlling Moisture in Concrete is Crucial Maintain Temperature

Reduces Permeability

Essential for structural water tightness Improves durability

Volume stability (reduces shrinkage cracks)

Optimal Strength is Achieved

Maintaining Moisture in Concrete is Crucial

Accelerates strength gain

Fogging

Water misters

Burlap covers

Plastic wraps

Curing compounds

Optimal Strength is Achieved

PROBLEM – WE CAN'T WAIT 28 DAYS

Fig. 10-1. Concrete strength increases with age as long as moisture and a favorable temperature are present for hydration of cement. Reference 10-16.

Curing – Essentials

The Answer is Steam Curing

Accelerates Strength Gain Dramatically

Initial delay

Temperature increase

Holding maximum temperature

Reduce temperature

Optimal Strength is Achieved

28 Day Strengths Achieved in 24-72 Hours

Additional Methods to Accelerate Strength Gain

Two Classes of Admixtures

Set accelerator

Strength accelerator

Calcium Chloride should <u>NOT</u> be used in Precast Reinforced Concrete

It is not an anti-freeze agent

Can cause reinforcement corrosion

Will cause aluminum to corrode (conduit in precast structures)

Curing

Non-Chloride accelerators are available but not as effective as Calcium Chloride

Final Thoughts

Type III cement always an option (cost)

High temperature with low humidity can crack product

Cover wet cast forms – supply live steam

Provide curing chambers

Curing Chambers

Steam should only flow out of the bottom of the cell

No Steam leakage out of top or sides

APPLY

Consider everything that we just covered and think about how you might use this information when you are back in your workplace.

Thank You!

Donald E. McNutt, PE (Don) ACPA Great Lakes Region Engineer dmcnutt@concretepipe.org American Concrete Pipe Association

2021PIPE SCHOOL FEBRUARY

REMAIN VIGILANT. CHOOSE TO NEVER COMPROMISE.

